The PingER Project: Active Internet Performance Monitoring for the HENP Community

Warren Matthews and Les Cottrell, Stanford University

ABSTRACT

The extraordinary network challenges presented by high energy nuclear and particle physics experiments has created a need for network monitoring both to understand present performance and to allocate resources to optimize performance between laboratories, and the universities and institutes collaborating on present and future experiments. The resulting Internet End-to-End Performance Monitoring project is called PingER. The monitoring infrastructure reflects the wide geographical spread of the collaborations, and involves a large number of research and commercial networks. The architecture of the data acquisition and methodology of the analysis have evolved over several years, and are described here in their present state. The strengths and weaknesses of the project are reviewed, and the derived metrics are discussed in terms of their diagnostic functions. The observed short-term effects and long-term trends are reviewed, and plans for future developments are described.

INTRODUCTION

Modern high energy nuclear and particle (HENP) physics experiments at laboratories around the world present a significant challenge to wide-area networks. The BaBar collaboration at the Stanford Linear Accelerator Center (SLAC), the Relativistic Heavy Ion Collider (RHIC) groups at Brookhaven National Laboratory (BNL), and the Large Hadron Collider (LHC) projects under development at the European Center for Particle Physics (CERN) will all generate petabytes (10^15 bytes) or exabytes (10^18 bytes) of data during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiments’ collaborators at universities and institutes throughout the world for analysis.

In order to assess the feasibility of the computing goals of these and future experiments, a number of committees and working groups founded projects to monitor performance. The combined efforts of these projects has resulted in a large end-to-end performance monitoring infrastructure being set in place with an active network probing system along with a set of tools for analyzing the data. This architecture has become known as PingER, for ping end-to-end reporting.

In particular, the activity of two groups drives the monitoring activities and is the basis of the detailed PingER project review in this article. The first of these groups is the Network Monitoring Task Force (NMTF) of the Energy Sciences Network (ESnet), which takes particular interest in performance between laboratories funded by the U.S. Department of Energy (DOE) and the universities and institutes involved in research at these laboratories. The second group is the Standing Committee on Interregional Connectivity (SCIC) of the International Committee for Future Accelerators (ICFA), which addresses problem areas of international and especially transoceanic performance across multiple networks connecting laboratories and universities conducting HENP research.

In addition, a consortium of industry leaders working together under the Cross Industry Working Team (XIWT) and, in particular, the Internet Performance Working Group (IPERF) are also using the PingER framework to monitor performance on commercial networks. The International Atomic Energy Authority (IAEA) used PingER in a study of performance between their European offices and nuclear power stations in South America. The authors are also aware that several Internet service providers and network operation centers have trialed the tools; however, it appears that only the HENP analysis work has been made public.

THE PINGER PROJECT

As its name indicates, the framework of the PingER project is based on the ping program familiar to network administrators and widely used for network troubleshooting. A ping involves sending an Internet Control Messages Protocol (ICMP) echo request [1] to a specified remote node which responds with an ICMP echo reply. It is also optional to send a data payload in the request which will be returned in the reply. The round-trip time (RTT) is reported; if multiple pings are dispatched, most implementations provide statistical summaries.

The performance of applications using TCP or UDP can be inferred from PingER metrics.
derived from the performance of ICMP packets because typically routers do not treat transit packets according to transport-level protocol and just send them on to the next hop. This assumption can be justified because studies [2] have shown a strong lower bound where a Hypertext Markup Protocol (HTTP) get is twice the minimum ping RTT. The factor of 2 can be understood because a minimal TCP transaction such as an HTTP get requires two round-trips, so the result indicates the packets experience similar conditions. A further source of validation is use of the ping packet loss and RTT in an equation to calculate the maximum TCP transfer rate [3] and compare the predicted value with measured TCP throughput using TTCP. Initial studies show good agreement, and a detailed study is in progress to understand the agreement considering TCP congestion avoidance. The PingER methodology provides good agreement with protocols and applications important to end users. It also provides an advantage over monitoring performance of a specific application because the separate packet loss and RTT statistics provide details to understand network activity. Monitoring application performance, which may involve a complicated interaction of multiple packets with backoff and retransmit effects, only provides information on that particular application.

In December 1999 there were 20 PingER monitoring sites around the world. There are eight monitoring sites in the United States: the Stanford Linear Accelerator Center (SLAC) in California; the HEPP Network Resource Center (HEP NRC) at the Fermi National Accelerator Laboratory near Chicago, Illinois; the Department of Energy (DOE) office in Washington, D.C.; the Brookhaven National Laboratory (BNL) in Upton, New York; the Atmospheric Radiation Measurement (ARM) facility at the Pacific Northwest National Laboratory in Richland, Washington; Carnegie-Mellon University (CMU) in Pittsburgh, Pennsylvania; Stanford University in Palo Alto, California; and the University of Maryland (UMD) at College Park, Maryland. There are two further North American sites. In Canada: the National Measurement facility (TRIUMF) near Vancouver, and at Carleton University in Ottawa. There are also seven sites in Europe: at CERN on the Swiss-French border near Geneva, Switzerland; the Deutsches Elektronen Synchrotron (DESY) near Hamburg, Germany; the Rutherford Laboratory (RAL) and Daresbury Laboratory, both in England; the Niels Bohr Institute (NBI) in Denmark; INFN’s National Center for Telematics and Information (CNAF); and the Research Institute for Particle and Nuclear Physics (KFKI) in Budapest, Hungary. Finally, there are three monitoring sites in Asia: at the KEK facility in Tsukuba, Japan; the Riken Institute of Physical and Chemical Research (RIKEN) in Wako, Japan; and Academia Sinica (SINICA) in Taiwan, China. The SLAC, HEP NRC, DOE, BNL, and ARM monitoring sites are connected to E-Snet, which connects the DOE-funded institutions in the United States. Fermilab (and hence HEP NRC) are also connected to the Metropolitan Research and Education Network (MREN), and BNL is also connected to the New York State Research and Education network (NY SERnet). CMU and UMD are connected to the vBNS (Very-High-Performance Backbone Network Service). Stanford University is connected to CALREN 2. UMD is also connected to the Abilene Gigapop in Washington, and CALREN 2 is connected to the Abilene Gigapop in Sacramento. Each of these networks has a backbone typically running at OC12 (622 M b/s), and most connections are OC3 (155 M b/s). The TRIUMF and Carleton University monitoring sites are connected to provincial networks which are connected to the Canarie national research backbone (CA*net2) operating at 2xOC3. Most of the European monitoring sites are connected to a national research network (NREN) and interconnected with the European TEN-155 network. Typically, in Western Europe, apart from Spain and Portugal, the TEN-155 backbone operates at 155 M b/s. To Eastern Europe, Spain, and Portugal the connections are 10-45 M b/s. Most NRNs have their own connection to North America. KEK is connected to the Japanese National Center for Science Information Systems (NACSIIS) network, and also has a connection to E-Snet. The RIKEN and SINICA monitoring sites have connections with commercial providers.

How these networks are interconnected and the routing policies practiced by the administrators are of critical importance to performance. Many networks have direct peering relationships, sometimes in several different locations. The STAR TAP in Chicago is a popular meeting point for research networks. PingER sends 11 pings with a 100-byte payload, at 1 s intervals, followed by 10 pings with a 1000-byte payload, also at 1 s intervals, to each of a set of specified remote nodes listed in a configuration file. The first ping is discarded because it is assumed that it is slow due to priming caches. Studies using UDP echo packets have found that the first packet takes about 20 percent longer than subsequent packets [4]. The ping default timeout of 20 s is used. A study of poor links with long delays (in particular ones involving satellites) indicates that the number of ping packets returning after 20 s is small. For such links the number of packets returning after 20 s but before 100 s is less than 0.1 percent. Small packets are sent to avoid fragmentation. Each set of 10 pings is called a sample, and each monitoring node-remote node combination a pair. In September 1999 there were 1977 pairs with 511 remote nodes at 355 sites in 54 countries on six continents.

Historically, each monitoring site has monitored remote nodes of interest to it, so monitoring sites at laboratories would ping the universities and institutes involved in collaborations at each laboratory, and monitoring sites at universities would ping the laboratories where research was conducted. Consequently, many countries are represented by only one node, but this node is usually at a research university, and the performance is assumed to be representative of networking in HENP rather than for the entire country. The United States and Western Europe make up most of the nodes, and this is fair for a study of HENP internetworking because most of the international experiments and the universities that collaborate on them are
in these regions. Around 70 percent of the remote nodes in the United States are educational or government sites, and 20 percent are connected to ESnet.

Recently the concept of beacon sites has been introduced, and all monitoring sites are requested to ping all the beacon sites. Beacon sites represent the various affinity groups monitored. All monitored sites, but especially beacon sites, should be reliable and available 24 hours a day, 7 days a week. The node should also be lightly loaded (or at least consistently loaded) and obviously responsive to pings. In order to achieve these goals and ensure they are kept, some beacon sites have created a CNAME. This enables the administrator to change the machine if it fails to meet any of the criteria. Other factors determining the selection of a beacon site include its physical location, backbone connectivity, and importance to HEPN in general. Monitoring a selected subset of nodes from all monitoring sites gives better information for troubleshooting and understanding the network in general. Currently, there are 53 beacon sites: 23 in the United States and Canada, 13 in Western Europe, six in Eastern Asia, three in South America, five in Eastern Europe, two in Australia, and one in India.

Each monitoring site pings its set of remote nodes every half hour. The coarseness of the measurements was chosen so that their impact on the network is low (100 b/s/pair on average), but at the same time they provide reasonable trend information. PingER was never envisioned to do real-time measurements for network operation centers. For many links this rate provides adequate details; however, in some cases where packet loss is rare, it may be beneficial to increase the sampling rate and the number of packets in each sample. The statistical summary of RTT and packet loss from the output of the ping program are extracted; the median RTT is also calculated, and the data is written to a file. A common gateway interface (CGI) program running on a Web server at the monitoring site is used to display and retrieve the data from the file.

DATA ANALYSIS

I really, traffic should traverse the Internet at the maximum speed for the medium (e.g., the speed of light in glass for fiber). However, connections very rarely do. Packets must be received by and sent from the routers' network interfaces, and if there is significant congestion on the line, the delay caused by queuing and processing in routers may add a large delay, or the packet may even be dropped if the buffer is full.

The PingER analysis defines five metrics, designed to look for the effect of this queuing to estimate network performance. The five metrics are packet loss, RTT, unreachability, unpredictability, and quiescence.

Packet Loss — Packets must queue in buffers in order to be processed by a router, and if the queue is full the packet is discarded; therefore, packet loss gives a good indication that at least part of the link is congested. Typically, performance of an application using TCP will deteriorate significantly after 3 percent packet loss due to resending of packets governed by the TCP algorithms, but the effect seen by the end user will vary according to the application. Different applications will vary in the extent to which packet loss affects their usability. Highly interactive applications such as videoconferencing will become unusable even with moderate packet loss, whereas noninteractive applications such as e-mail will work even across a network with high packet loss.

Round-Trip Time — The queuing in buffers described previously also affects the RTT. However, unlike packet loss, where it is possible to reduce losses to zero, it is never possible to reduce the RTT to less than the time taken for light to travel the distance along the fiber. The reported RTT is the minimum imposed by the laws of physics, the time taken for the packet to be accepted by the router interface, any delay caused by queuing, and the time taken for the packet to be transmitted from the interface. The minimum RTT indicates the length of the route.
taken by the packets, the number of hops, and the line speeds. The distribution of RTT indicates the congestion. Changes in minimum RTT can be an indication of a route change.

The major effect of poor response time is on interactive sessions such as telnet, or packetized video or voice, where even fairly moderate delay can cause severe disruption. Applications that do not require such a level of interactivity (e.g., e-mail) may appear to perform well even with high delay.

Unreachability — If no reply is received from all 10 ping packets sent to a remote node, the remote node is considered unreachable. It is important for accurate network performance analysis that the cause of this unreachability be network performance. However, computers crash and become unresponsive, or there is some reason other than network performance that no replies were received, and it is extremely difficult to program analysis code to tell the difference. In addition, statistical fluctuation means that pairs involving links that suffer high packet loss will sometimes be reported as unreachable when in fact the node is reachable but the packet loss exceeds 90 percent. In practice it is left to the analyst's judgment of whether the node is truly unreachable due to network problems. Often a number of nodes will become unreachable at the same time, indicating that a common cause has affected them all. High-performance research networks are considered as good as it gets, but they too experience glitches. Typically, less than 1 percent of the PingER samples between nodes on these networks are completely lost; hence, unreachability less than 1 percent is classified as good. However, it is somewhat subjective to claim that a user would consider any amount of unreachability acceptable.

Quiescence — If all 10 ping packets sent to a remote node receive a reply, the network is considered quiescent or nonbusy. The frequency of this zero packet loss may be an indication of the use of the network. For example, a network that is busy eight work hours per weekday and quiescent at other times would have a quiescent percentage of about 75 percent. If the network is busy all during the workday, it is considered “poor” and probably needs upgrading.

Unpredictability — Unpredictability is derived from a calculation based on the variability of packet loss and round trip time. The ping success is the proportion of replies received from the number of packets sent, and the ping rate is twice the ratio of the ping payload to the average RTT. In any time period, the ratio of the average and maximum ping success, s, and that of the average and maximum ping rate, r, is combined to create the unpredictability, u, where

\[u = \frac{1}{\sqrt{2}} \sqrt{(1-s)^2 + (1-r)^2} \]

The derived value is a measure of the stability and consistency of a link; a high-performing link with low packet loss and low RTT will be ranked good, but a poorly performing link with consistently high packet loss and high RTT will also be ranked good as long as the packet loss is consistent. However, links where packet loss and RTT can vary dramatically will rank poorly because the end user will be unsure just how the link will perform.

LIMITATIONS OF THE PingER METHODOLOGY

There are two main issues with the PingER methodology: periodic sampling and the use of ICMP packets.

Periodic sampling using cron to send pings at regular intervals has proved to be a powerful tool in understanding network performance: however, periodic network events that occur at times other than when the samples are scheduled will never be observed, and periodic network events that do occur regularly just as the samples are scheduled may make the network performance appear to be poorer than it is. The more effective method, and in accordance with RFC 2330 [5], would be to observe the network at random times using a Poisson distribution of samples.

The use of ICMP packets is the source of controversy because quality of service (QoS) techniques deliberately hinder the progress of some types of packets in order to increase the performance for other types, and ICMP packets may be given low priority in order for higher priority to be given to TCP and UDP packets. Furthermore, ping packets can be used in certain types of security attacks such as smurf attacks. Some networks give low priority to ping in order to reduce the effect of such attacks, so ping monitoring makes the network appear to have poorer performance than it actually has. In some cases rate limiting is also observed. This is usually implemented by networks with low-bandwidth connections and restricts the amount of ICMP traffic allowed to flow through the router. Once the limit has been reached, further ICMP (including ping packets) will be dropped. It may be possible to use a TCP- or UDP-based echo program, but these may involve their own security issues and are often blocked too. Other monitoring projects such as Surveyor [6] used dedicated machines to exchange one-way UDP packets.

In addition to the above issues, there are also the pathologies of out-of-order responses and duplicate responses. We record out-of-order packets. Between December 1998 and September 1999, for the SLAC measurements, we recorded less than 0.1 percent samples with out-of-order responses, and 2/3 of these came from one site in China. In all cases the out-of-order packet was due to an extraordinarily long response time (up to 68 times as long as a normal response). Occasionally a ping echo request will result in greater than one echo response. For example, we may send out six pings (sequence numbers 0–5), and the sequence numbers of the responses are 1, 1, 2, 4, 4; that is, the pings with sequence numbers 0 and 3 are lost, but the system stops listening after six responses are received, so the response from ping 5 is ignored. Between December 1998 and September 1999, for the SLAC measurements, less than 0.01 percent of the samples have had duplicate response, and all were involved with a host in Russia. Almost all of these are packets which experienced long delays (up to 94 s), and

2 Of course, everyone uses ssh these days.

3 Developed by Hans-Werner Braun.
During normal operation, packet losses are negligible and RTTs are minimum. A major cause of this high performance is that the links are far from saturated; in fact, at times the utilization is less than 5 percent [7]. Connections between the networks avoid congested Internet exchange points. Future HENP experiments and other next-generation Internet (NGI) projects will involve significantly more utilization, but the long-term trend for most connections monitored by PingER has so far been toward steady improvement. Figure 1 shows the RTT between sites on ESnet, and sites in several regions and groups. Exponential fits to the data are included to show the overall improvement even though the monitoring has grown over time to include more remote regions. In most cases advances in infrastructure have stayed at least one step ahead of the demands of bandwidth-hungry applications.

In Europe, where NRNs provide connectivity for research entities within each country, performance within the NRN is usually good. Performance across the TEN-155 backbone is also good, but connectivity to Eastern Europe is often poor.

International connectivity, particularly transoceanic performance, has improved dramatically since the PingR project began. Figure 2 shows the packet loss between ESnet sites in the United States and universities in the United Kingdom since January 1995. An exponential fit to the data is marked to show the overall trend toward better performance. Initially, the only monitored link was SLAC to RAL, and the 2 Mb/s connection was suffering heavy packet loss. In June 1997 three more ESnet monitoring sites began to monitor links to different U.K. sites. It can be seen that the measured packet loss tracks from pair to pair extremely well. This observation was the basis for the decision to select beacon sites rather than attempt full mesh pinging. Packet loss decreases when the capacity of the trans-Atlantic link is upgraded, but increases again as the extra headroom is quickly taken up. Packet loss also decreases significantly during university holidays. The trans-Atlantic link, as of July 5, 1999, consists of 2 x 0.3 connections (155 Mb/s each), an increase in bandwidth of about 150 times in 4.5 years.

SHORT-TERM GLITCHES AND CHANGES

Over shorter timescales, all connections, even the high-performance research networks, suffer glitches. This section describes a few examples to illustrate typical observations.

The connection between the KEK facility in Japan and the DESY Laboratory in Germany, shown in Fig. 3, suffered high packet loss. On July 1, 1998, the NACSIS Europe line was directly connected to TEN-34 in London, rather than the traffic transiting across a third-party network creating a more direct connection.

Colorado State University is connected to the Abilene Network. ESnet peers with Abilene in several places, and packets from CSU to SLAC were being routed via Chicago. Figure 4 shows the effect of changing the route to send packets bound for SLAC to the ESnet-Abilene peering point in Sacramento. In this case the route change was planned, and it can be seen that the

the ping client incorrectly associated the response with the wrong echo request.
RTT became much better. Similar changes are often observed and are indicative of routing changes, but these are frequently not planned, and more often things get worse, usually for small periods of time due to a router outage.

The connectivity between sites in Scandinavian countries connected to the NORDUnet and sites in North America ranges from good to poor. In December 1998, ping monitoring reported that these links suddenly became unusable. Figure 5 shows the packet loss between NBI and FNAL. However, the apparent deterioration in performance was due to the installation of Smurf filters on NORDUnet’s U.S. connection. These filters are designed to defeat a security attack by giving very low priority to ping packets, which results in many packets being dropped. TCP and UDP traffic is unaffected by these filters.

Figure 6 shows the zero packet loss frequency (quiescence) between RAL and the National Institute for Nuclear and High Energy Physics (NIKHEF) in the Netherlands. Typically, the link was busy during the workday and suffered only minor packet loss at other times until the TEN-155 backbone became operational on 11 December, providing additional bandwidth such that the connectivity during the workday became better and packet loss was reduced.

The Institute for High Energy Physics (IHEP) in Beijing, China, has a direct connection to the KEK facility, which provides connectivity to the HENP community. However, the HENP community often found nodes at IHEP unreachable; the connection was completely saturated. When the link was upgraded from 64 to 128 kb/s on 30 October 1998, the unreachability decreased from up to 25 percent to less than 5 percent. Further improvement is required to be able to utilize the Internet for research at IHEP, but even a modest upgrade can make a vast improvement.

CONCLUSIONS REGARDING THE Pinger METHODOLOGY

The PingER methodology has been highly effective. The results discussed earlier illustrate how a simple tool can provide insight into the cause and effect of short-term glitches and long-term trends. New technologies certainly provide a challenge for the future development of the PingER tools, and the creativity and imagination of the analyst trying to understand performance. In some cases, which will certainly increase, PingER will not be able to provide accurate monitoring, but these cases would probably defeat many sophisticated monitoring tools too.

FUTURE WORK

Particle physics experiments keep getting more powerful and more complex. They probe deeper into the subnuclear world, and require larger collaborations of physicists to run them, analyze the huge quantities of data, and spread the cost. Physicists are also an apparently cosmopolitan group, and require access to the experimental data from their desktops at their home institutions. The capacity of research networks will grow and new technologies be developed. Further development of the PingER framework is necessary to keep pace and provide accurate performance monitoring.

A number of projects are actively being worked on. Several new metrics that can be derived from the PingER data for use in determining network performance are to be included in the analysis and will be reported in the future. The variation between the individual RTT in each sample, what may be called packet delay variation or jitter, is being studied on a testbed that has been set up between SLAC, Lawrence Berkeley National Laboratory (LBNL), and Sandia National Laboratory. This testbed is being used for a detailed study of voice over IP (VoIP) and QoS. New tools and techniques may be developed to understand how network performance correlates to new applications.
and other tools, and predicted

Frequency of zero packet loss (quiescence) between RAL and

monitoring sites are also

using Poisson sampling

Figure 6.

I

December 1998.

NIKHEF improved when the TEN-155 network became operational in

the number of

itor low-bandwidth connections. Variability in

Variability in payload sizes will be studied to

will be allocated to resolving the issues and

delayed due to stability problems. Extra effort

natures to identify ICMP rate limiting.

examined.

Techniques developed by other groups will be

cal analysis and histogramming packages.

results. The data and reports will be made avail-

able in other formats for importing into statisti-

ical, research, and network affiliations of all the

sites monitored.

This work would not have been possible with-

out the efforts of the maintainers of the moni-

tering sites: Wen-Shui Chen, Ricardo G. Patara,

Darren Curtis, M ike O’Connor, Olivier Martin,

Wade Hong, Michael Procario, R obin T asker,

Michael Ernst, Michael C. Weaver, Cristina Vis-

toli, Jae-young Lee, Fukuko Y usasa, Bjorn S.

Nilsson, Takashi Ichihara, Piroska Giese,

Andrew Daviel, and Drew Baden; and the sup-

port and funding of the M athematical, Informa-

tion, and Computational Sciences Division of the

U.S. Department of Energy (D OE/M ICS).

We would also like to thank the members of

the I CFA -SCIC and E Snet committees for their

support of this work.

REFERENCES

stanford.edu/comp/net/wan-mong/ping/correlation.html,
Dec. 1996.

advanced.org/surveyor

[7] Abilene Network Operations Center Web site,
http://www.abilene.iu.edu

(NIM I) Project, http://www.psc.edu/networking/nimi

nlanr.net/AMP

BIographies

Les Cottrell (cottrell@slac.stanford.edu) left the University of Manchester, England, in 1967 with a Ph.D. in nuclear physics to pursue fame and fortune on the Left Coast of the United States. He joined SLAC as a research physicist in high energy physics. focusing on real-time data acquisition and analysis in the Nobel prize winning group that discov-
eried the quark. In 1973–1974, he spent a year’s leave of

absence in Switzerland at the CERN center and then in New York at the IBM U.K. Laborato-
ries at Hursley, England, where he obtained United States

Patent 4,688,181 for a dynamic graphical cursor. He is cur-

rently the assistant director of the ICFA Computing Ser-

dices group and leads the computer networking and
telecommunications areas. He is also a member of the

Energy Sciences Network Site Coordinating Committee
(E S C C) and chair of the E Snet Network Monitoring Task

Force. He was a leader of the effort that, in 1994, resulted

in the first Internet connection to mainland China. He is

also the leader of the DOE-sponsored Internet End-to-end

Performance Monitoring (I EPM) effort.

Warren Matthews (warrenm@slac.stanford.edu) obtained a

Ph.D. in particle physics; then, realizing packets were more

fun than particles, he went to pursue packets across

networks for an Internet service provider. He joined SLAC as a

network specialist in 1997 as part of the DOE Internet End-
to-end Performance Monitoring (IEPM) group.

ACKNOWLEDGMENTS

The authors would like to acknowledge the sug-
taining the archive site and developing the data
gathering tools. Special thanks go to Rebecca

Moss for her hard work figuring out all the polit-
cal, research, and network affiliations of all the

sites monitored.

tion to the PingER framework to include tracer-

oute is being developed. A metric based on min-

imum R T T will also be included, and correla-
tions with route changes studied. Further

comparison between the T CP throughput, mea-

ured with T T C P and other tools, and pre-

dicted values of the maximum T CP transfer rate [3],

using the PingER packet loss and R T T , are

underway. Also, we are looking at extracting sig-
natures to identify ICMP rate limiting.

A version of PingER using Poisson sampling

has been developed, but deployment has been
delayed due to stability problems. E xtra effort

will be allocated to resolving the issues and

installing the code at the monitoring sites. M ore

configurability will be built into the framework.

V ariability in payload sizes will be studied to

understand if this is a more friendly to moni-
tor low-bandwidth connections. V ariability in

the number of ping packets in a sample and the

sampling rate will also be studied on very well

performing links.

Several PingER monitoring sites are also

home to other network monitoring projects such

as Surveyor [6], N I M I [8], A M P [9], and R I P E

[10]. Studies looking at correlations between net-

work performance determined by these projects

have begun at SLAC. In addition, passive moni-

toring using various sniffing tools is being

deployed, and agreements and disagreements

will be studied.

A major challenge is the visualization of

results. The data and reports will be made avail-

able in other formats for importing into statisti-

cal analysis and histogramming packages.

Techniques developed by other groups will be

examined.

REFERENCES

stanford.edu/comp/net/wan-mong/ping/correlation.html,
Dec. 1996.

advanced.org/surveyor

[7] Abilene Network Operations Center Web site,
http://www.abilene.iu.edu

(NIM I) Project, http://www.psc.edu/networking/nimi

nlanr.net/AMP

BIographies

Les Cottrell (cottrell@slac.stanford.edu) left the University of Manchester, England, in 1967 with a Ph.D. in nuclear physics to pursue fame and fortune on the Left Coast of the United States. He joined SLAC as a research physicist in high energy physics. focusing on real-time data acquisition and analysis in the Nobel prize winning group that discov-
eried the quark. In 1973–1974, he spent a year’s leave of

absence as a visiting scientist at CERN in Geneva, Switzer-
land, and he spent 1979–1980 at the IBM U.K. Laborato-
ries at Hursley, England, where he obtained United States

Patent 4,688,181 for a dynamic graphical cursor. He is cur-

rently the assistant director of the SLAC Computing Ser-

dices group and leads the computer networking and
telecommunications areas. He is also a member of the

Energy Sciences Network Site Coordinating Committee
(E S C C) and chair of the E Snet Network Monitoring Task

Force. He was a leader of the effort that, in 1994, resulted

in the first Internet connection to mainland China. He is

also the leader of the DOE-sponsored Internet End-to-end

Performance Monitoring (I EPM) effort.

Warren Matthews (warrenm@slac.stanford.edu) obtained a

Ph.D. in particle physics; then, realizing packets were more

fun than particles, he went to pursue packets across

networks for an Internet service provider. He joined SLAC as a

network specialist in 1997 as part of the DOE Internet End-
to-end Performance Monitoring (IEPM) group.

ACKNOWLEDGMENTS

The authors would like to acknowledge the sug-
gestions of many people, in particular the

insightful comments of David Williams and Har-

vey Newman, and the members of the network

monitoring mailing list. Thanks to John Halperin

and Charles Granieri for their work on the

network monitoring project, and to Bill Lidinsky,

Shiqi He, and especially David M artin for main-

IEEE Communications Magazine • May 2000